Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.791
Filtrar
1.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563517

RESUMO

The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.


Assuntos
Blastocisto , Diferenciação Celular , Linhagem da Célula , Modelos Biológicos , Animais , Camundongos , Blastocisto/metabolismo , Blastocisto/citologia , Transdução de Sinais , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Endoderma/citologia , Endoderma/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo
2.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534393

RESUMO

Neuromesodermal progenitors (NMPs), serving as the common origin of neural and paraxial mesodermal development in a large part of the trunk, have recently gained significant attention because of their critical importance in the understanding of embryonic organogenesis and the design of in vitro models of organogenesis. However, the nature of NMPs at many essential points remains only vaguely understood or even incorrectly assumed. Here, we discuss the nature of NMPs, focusing on their dynamic migratory behavior during embryogenesis and the mechanisms underlying their neural vs. mesodermal fate choice. The discussion points include the following: (1) How the sinus rhomboidals is organized; the tissue where the neural or mesodermal fate choice of NMPs occurs. (2) NMPs originating from the broad posterior epiblast are associated with Sox2 N1 enhancer activity. (3) Tbx6-dependent Sox2 repression occurs during NMP-derived paraxial mesoderm development. (4) The nephric mesenchyme, a component of the intermediate mesoderm, was newly identified as an NMP derivative. (5) The transition of embryonic tissue development from tissue-specific progenitors in the anterior part to that from NMPs occurs at the forelimb bud axial level. (6) The coexpression of Sox2 and Bra in NMPs is conditional and is not a hallmark of NMPs. (7) The ability of the NMP pool to sustain axial embryo growth depends on Wnt3a signaling in the NMP population. Current in vitro models of NMPs are also critically reviewed.


Assuntos
Células-Tronco Neurais , Animais , Células-Tronco Neurais/fisiologia , Mesoderma , Camadas Germinativas , Transdução de Sinais , Sistema Nervoso
3.
Cells ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534378

RESUMO

Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of differentiation is limited. This is a long-standing issue for rapid and high-throughput screening to determine lineage specification efficiency. Here, we present deep learning (DL) methodologies for predicting and classifying early mesoderm cells differentiated from embryoid bodies (EBs) based on cellular and nuclear morphologies. Using a transgenic murine embryonic stem cell (mESC) line, namely OGTR1, we validated the upregulation of mesodermal genes (Brachyury (T): DsRed) in cells derived from EBs for the deep learning model training. Cells were classified into mesodermal and non-mesodermal (representing endo- and ectoderm) classes using a convolutional neural network (CNN) model called InceptionV3 which achieved a very high classification accuracy of 97% for phase images and 90% for nuclei images. In addition, we also performed image segmentation using an Attention U-Net CNN and obtained a mean intersection over union of 61% and 69% for phase-contrast and nuclear images, respectively. This work highlights the potential of integrating cell culture, imaging technologies, and deep learning methodologies in identifying lineage specification, thus contributing to the advancements in regenerative medicine. Collectively, our trained deep learning models can predict the mesoderm cells with high accuracy based on cellular and nuclear morphologies.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes , Animais , Camundongos , Diferenciação Celular/fisiologia , Camadas Germinativas/metabolismo , Mesoderma/metabolismo
4.
Curr Top Dev Biol ; 157: 83-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556460

RESUMO

For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.


Assuntos
Encéfalo/embriologia , Face/embriologia , Camadas Germinativas , Mesoderma , Sistema Nervoso , Mesoderma/fisiologia , Morfogênese , Padronização Corporal
5.
Stem Cell Res ; 76: 103369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430735

RESUMO

Neurodevelopmental disorder with or without autistic features and/or structural brain abnormalities (NEDASB) is a rare autosomal dominant disorder caused by a heterozygous mutation in the NOVA2 gene on chromosome 19q13. Here, we describe the generation and characterization of an iPSC line derived from the peripheral blood of a 7-year-old patient carrying a novel heterozygous mutation in NOVA2 (c.625 del). The iPSCs with the confirmed patient-specific mutation were demonstrated by pluripotency markers, a normal karyotype, and the ability to differentiate into three germ layers. This NOVA2-mutant iPSC line could facilitate disease modeling and therapy development studies for NEDASB.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Cariótipo , Mutação , Camadas Germinativas , Leucócitos Mononucleares/metabolismo , Antígeno Neuro-Oncológico Ventral
6.
Stem Cell Res ; 76: 103358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447455

RESUMO

Parkinson's disease is a degenerative brain disorder characterized by dopamine neuronal degeneration and dopamine transporter loss. In this study, we generated an induced pluripotent stem cell (iPSC) line, KNIHi001-A, from the peripheral blood mononuclear cells (PBMCs) of a 76-year-old man with Parkinson's disease. The non-integrating Sendai virus was used to reprogram iPSCs. iPSCs exhibit pluripotent markers, a normal karyotype, viral clearance, and the ability to differentiate into the three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Masculino , Humanos , Idoso , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/metabolismo , Leucócitos Mononucleares/metabolismo , Camadas Germinativas/metabolismo , Vírus Sendai/genética , Reprogramação Celular , Diferenciação Celular/fisiologia
7.
Nat Cell Biol ; 26(3): 353-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443567

RESUMO

Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.


Assuntos
Embrião de Mamíferos , Camadas Germinativas , Gravidez , Feminino , Humanos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Transdução de Sinais , Implantação do Embrião
8.
Methods Mol Biol ; 2781: 163-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502452

RESUMO

The immunofluorescence technique has been used to identify pluripotent markers in the human amniotic epithelial cells (hAEC). hAEC belonging to human fetal membranes, specificamently to amnion layer, and are arising by epiblast, this sugest that the hAEC have characteristics of epiblast cells, in other words, characteristcs of pluripotent stem cells. Here we describe obtaining human amnion tissue and identifying pluripotent markers by immunofluorescence.


Assuntos
Âmnio , Células-Tronco Pluripotentes , Humanos , Imunofluorescência , Camadas Germinativas , Células Epiteliais
9.
Results Probl Cell Differ ; 72: 11-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509250

RESUMO

Pluripotent stem cell lines established from early-stage embryos of mammals or other species represent the embryonic stages before the initiation of somatic development. In these stem cell lines, cell proliferation capacity is maintained while developmental progression is arrested at a specific developmental stage that is determined by the combination of culture conditions, cell state, and species. All of these pluripotent stem cell lines express the transcription factors (TFs) Sox2 and Pou5f1 (Oct3/4); hence, these TFs are often regarded as pluripotency factors. However, the regulatory roles of these TFs vary depending on the cell line type. The cell lines representing preimplantation stage embryonic cells (mouse embryonic stem cells, mESCs) are regulated principally by the combined action of Sox2 and Pou5f1. Human ESCs and mouse epiblast stem cells (EpiSCs) represent immature and mature epiblast cells, respectively, where Otx2 and Zic2 progressively take over the preimplantation stage's regulatory roles of Sox2 and Pou5f1. This transition of the core TFs occurs to prepare for the initiation of somatic development.


Assuntos
Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Camadas Germinativas/metabolismo , Linhagem Celular , Diferenciação Celular , Mamíferos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38509249

RESUMO

All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early  post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Camadas Germinativas/metabolismo , Linhagem Celular , Mamíferos
11.
Results Probl Cell Differ ; 72: 61-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509252

RESUMO

Studies using early-stage avian embryos have substantially impacted developmental biology, through the availability of simple culture methods and easiness in tissue manipulation. However, the regulations underlying brain and head development, a central issue of developmental biology, have not been investigated systematically. Yoshihi et al. (2022a) devised a technique to randomly label the epiblast cells with a green fluorescent protein before their development into the brain tissue. This technique was combined with grafting a node or node-derived anterior mesendoderm labeled with a cherry-colored fluorescent protein. Then cellular events were live-recorded over 18 hours during the brain and head development. The live imaging-based analyses identified previously undescribed mechanisms central to brain development: all anterior epiblast cells have a potential to develop into the brain tissues and their gathering onto a proximal anterior mesendoderm forms a brain primordium whereas the remaining cells develop into the covering head ectoderm. The analyses also ruled out the direct participation of the node's activity in the brain development. Yoshihi et al. (2022a) also demonstrate how the enigmatic data from classical models can be reinterpreted in the new model.This chapter was adapted from Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. (2022b). Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol. 10:1019845. doi: 10.3389/fcell.2022.1019845.


Assuntos
Gástrula , Camadas Germinativas , Camadas Germinativas/metabolismo , Ectoderma/metabolismo , Desenvolvimento Embrionário , Encéfalo
12.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473927

RESUMO

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.


Assuntos
MicroRNAs , Células-Tronco Pluripotentes , Animais , Camundongos , Feminino , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular/genética , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Camadas Germinativas/metabolismo , MAP Quinase Quinase 6
13.
Dev Cell ; 59(6): 695-704.e5, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38359835

RESUMO

Primordial germ cells (PGCs) are the earliest precursors of the gametes. During normal development, PGCs only give rise to oocytes or spermatozoa. However, PGCs can acquire pluripotency in vitro by forming embryonic germ (EG) cells and in vivo during teratocarcinogenesis. Classic embryological experiments directly assessed the potency of PGCs by injection into the pre-implantation embryo. As no contribution to embryos or adult mice was observed, PGCs have been described as unipotent. Here, we demonstrate that PGCs injected into 8-cell embryos can initially survive, divide, and contribute to the developing inner cell mass. Apoptosis-deficient PGCs exhibit improved survival in isolated epiblasts and can form naive pluripotent embryonic stem cell lines. However, contribution to the post-implantation embryo is limited, with no functional incorporation observed. In contrast, PGC-like cells show an extensive contribution to mid-gestation chimeras. We thus propose that PGC formation in vivo establishes a latent form of pluripotency that restricts chimera contribution.


Assuntos
Células Germinativas , Células-Tronco Pluripotentes , Masculino , Camundongos , Animais , Células Germinativas/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Espermatozoides , Camadas Germinativas , Diferenciação Celular
14.
Methods Mol Biol ; 2770: 99-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351449

RESUMO

In vitro induction of primordial germ cell like-cells (PGCLCs) from pluripotent stem cells (PSCs) is a robust method that will contribute to understanding the fundamentals of cell fate decisions, animal breeding, and future reproductive medicine. Here, we introduce this system established in the rat model. We describe a stepwise protocol to induce epiblast-like cells and subsequent PGCLCs by forming spherical aggregates from rat PSCs. We also describe a protocol to mature these PGCLCs from specified/migratory to the gonadal stage by aggregation with female gonadal somatic cells.


Assuntos
Células-Tronco Pluripotentes , Ratos , Feminino , Animais , Células Germinativas , Diferenciação Celular , Células Cultivadas , Camadas Germinativas
15.
Dev Cell ; 59(4): 465-481.e6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38237590

RESUMO

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.


Assuntos
Epigênese Genética , Células-Tronco Pluripotentes , Animais , Camundongos , Metilação de DNA/genética , Cromatina/metabolismo , DNA/metabolismo , Diferenciação Celular/genética , Camadas Germinativas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
16.
Nat Struct Mol Biol ; 31(1): 102-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177678

RESUMO

As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias , Animais , Camundongos , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias Murinas , Células Germinativas/metabolismo , Camadas Germinativas/metabolismo , Mamíferos/metabolismo
17.
Stem Cell Reports ; 19(2): 174-186, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38215757

RESUMO

In early mammalian development, cleavage stage blastomeres and inner cell mass (ICM) cells co-express embryonic and extra-embryonic transcriptional determinants. Using a protein-based double reporter we identify an embryonic stem cell (ESC) population that co-expresses the extra-embryonic factor GATA6 alongside the embryonic factor SOX2. Based on single cell transcriptomics, we find this population resembles the unsegregated ICM, exhibiting enhanced differentiation potential for endoderm while maintaining epiblast competence. To relate transcription factor binding in these cells to future fate, we describe a complete enhancer set in both ESCs and naive extra-embryonic endoderm stem cells and assess SOX2 and GATA6 binding at these elements in the ICM-like ESC sub-population. Both factors support cooperative recognition in these lineages, with GATA6 bound alongside SOX2 on a fraction of pluripotency enhancers and SOX2 alongside GATA6 more extensively on endoderm enhancers, suggesting that cooperative binding between these antagonistic factors both supports self-renewal and prepares progenitor cells for later differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição , Animais , Linhagem da Célula/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Camadas Germinativas , Endoderma , Blastocisto , Mamíferos/metabolismo
18.
19.
Methods Mol Biol ; 2767: 75-84, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36749485

RESUMO

The microfluidic amniotic sac embryoid (µPASE) is a human pluripotent stem cell (hPSC)-derived multicellular human embryo-like structure with molecular and morphological features resembling the progressive development of the early post-implantation human embryonic sac. The microfluidic device is specifically designed to control the formation of hPSC clusters and expose the clusters to different morphogen environments, allowing the development of µPASEs in a highly controllable, reproducible, and scalable fashion. The µPASE model displays human embryonic developmental landmarks such as lumenogenesis of the epiblast, amniotic cavity formation, and the specification of primordial germ cells and gastrulating cells (or mesendoderm cells). Here, we provide detailed instructions needed to reproduce µPASEs, including the immunofluorescence staining and cell retrieval protocols for characterizing µPASEs obtained under different experimental conditions.


Assuntos
Microfluídica , Células-Tronco Pluripotentes , Humanos , Camadas Germinativas , Embrião de Mamíferos , Âmnio , Diferenciação Celular
20.
Nature ; 626(7998): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052228

RESUMO

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Interleucina-6/metabolismo , Gástrula/citologia , Gástrula/embriologia , Âmnio/citologia , Âmnio/embriologia , Âmnio/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...